Clemson University

School of Computing Seminar with Lorenzo Barberis Canonico, Clemson University School of Computing

Bubble Poppers: A Recommendation System to Burst Filter Bubbles


One of the major challenges of recommendation systems is the delicate balance between optimizing user preferences and diversity exposure. Failing to balance these priorities results in recommendation systems that push the user population towards a local optimum, a phenomenon that results in “filter bubbles”. We propose a new type of recommendation system that combines evolutionary game theory and cutting edge machine learning to undermine the source of “bubbles”.


Lorenzo Barberis Canonico is a Ph.D. student in human-centered computing at the Clemson University. He is part of the Team Research Analytics in Computational Environments (TRACE) Research Group. His research interest include team cognition, machine learning, cognitive science, and game theory.

Friday, August 30, 2019 at 2:30pm to 3:30pm

McAdams Hall, 114
821 McMillan Rd., Clemson, SC 29634, USA

Event Type

Lectures / Seminars / Speakers


College of Engineering, Computing and Applied Sciences, School of Computing, Research Seminars

Target Audience

Students, Faculty


Contact Name:

Dida Weeks

Contact Phone:


Contact Email:


Recent Activity